Quality Diversity

Incorporating the (extended) phenotype into optimization
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Initial provocation

(Hidden) assumptions in optimization:

- Solving a problem is solving its objective
function

- Maximize, maximize, maximize.

- Objectives will not change

- Theengineer just wants a solution

- AParetosetisadiverse set

- We as computer scientists can solve
engineering problems

But does it capture the actual problem?

But if X, then | am willing to...

But they will in the real world of
engineering

They want insights too.

Not always. Will show later.

No. Engineers can solve them. If they get
enough iteration time with the real world.

We can only help them gain insights



Introduction

Computers can do many things in parallel.

So instead of finding the best solutions, we should
develop algorithms that

- find many (= different) good solutions

- provide insight into the problem and its
solutions

- allow engineers to change their minds

-> this lecture is about

Extended phenotypes, multimodal divergent
optimization -> Quality Diversity algorithms
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1. Novelty Search

(T

Abandon all objectives



Deceptive Fithess Landscapes

Evolve neural networks that traverse the maze.

Fitness function: distance to the goal °

Left/Right  Forward/Back A K \
ﬁ ﬁ Rangefinder
o /

deceptive maze

Evolved Topology

Rangefinder Radar Bias
Sensors Sensors




Deceptive Fithess Landscapes

Goal is hard to reach due to local optimum.

The fitness landscape is deceptive:

- Many evolutionary paths lead to local
optimum \
In order to reach the global optimum, a

fitness valley has to be crossed o /

deceptive maze



Deceptive Fithess Landscapes

Objective based search (NEAT") runs into local
optimum.

Even though NEAT uses speciation for diversity
maintenance

Intuition: controllers are needed that might
perform worse, but choose different paths.

-> behavioral diversity Objective based search

! Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation.



Abandoning Objectives

Replace fitness function with novelty metric'. high sparsity

Behavior characterization (BC): position at the
end of robot trajectory

Novelty? = sparsity p in BC space, k nearest
neighbors

. MY A
1 _ Objective based search
p(x) — z Z dlSt(x, ,LL,‘),

i=0

' Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation.
% Novelty might be seen as a misnomer, as we are able to measure how “novel” a solution is. If we are able to measure it, is it really novel?
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Abandoning Objectives

Solutions are much more diverse

Question: what do you think might happen when
we remove the borders of the maze?
Consequences for novelty based search?

Objective based search

Novelty based search

11



Novelty Search

Apply to

- deceptive fitness landscapes

- multimodal landscapes

- intuitive behavioral characterizations

- and domain constraints on possible
expressible behaviors

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation.

12



2. Quality Diversity

Ng
(a) Hopper (b) Crab (c) Quadruped (d) Tailed Quadruped

“But we are interested in optimality!”



Reintroducing Fithess

Combine fitness and novelty using multiobjective
optimization
-> Novelty Search with Global Competition

fails to exploit the fact that some niches may
naturally support different levels of fithess than
others.

Pareto front

fitness

novelty

14



Reintroducing Fitness

Novelty Search with Local Competition (NSLC) *

Solutions are only compared in their behavioral
niche?

Combine novelty and local fitness criteria (# of
neighbors with lower fitness)

' Lehman, J., & Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition. GECCO.
% niching itself is not new of course

15



Quality Diversity

high-dimensional
genotypic space

/ ~
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/ _\ expression
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low-dimensional
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behavior
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influence
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phenotypic
niching
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archive A
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Fig. 2 Phenotypic aspects of solutions genotypic space determine similarity and niche assignment.

Candidate solutions only compete within the phenotypic niches they occupy.

Hagg, A. (2019). Discovering Modes using Quality Diversity Algorithms. (tbp)
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2a. First algorithms



Novelty Search with Local Competition

Fitness: distance travelled Behavior characterization (3 dimensions):

- height
- mass
- #activejoints

Lehman, J., & Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition. GECCO.
! niching itself is not new of course
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Diversity of Virtual Creatures

Lehman, J., & Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition. GECCO.



https://docs.google.com/file/d/1stns7QGGzBRv_jE_tPK1WKfsj5V7RC6x/preview
https://docs.google.com/file/d/18-CQvToRGUaab-zwD9RYT8gWjJqo5dQz/preview
https://docs.google.com/file/d/1PCUZp3thbfgNXGijoW2IpKyjx1wA6SAi/preview
https://docs.google.com/file/d/1Cw9REciYPmEecZDvsIDMtBO3CFaASxKp/preview
https://docs.google.com/file/d/1rWYPJfyp5k7ja0PXRouD4fBoeGrawqTz/preview
https://docs.google.com/file/d/1Zr874_TPFnjPtw9ZjPGzaeFxUezT--nU/preview

l. Novelty Search with Local Competition

) L L
e - ‘ . I'.. L B =
- - e mmoowm
(a) Novelty Only (b) Fitness Only  (c) Global Competition (d) Local Competition

(a) Hopper (b) Crab (¢) Quadruped (d) Tailed Quadruped
Figure 7: Diverse competent morphologies discovered within a typical single run of local competition.
are shown that have specialized to effectively exploit particular niches of morphology space. These creatures were all found in the final
population of a typical run of local competition. The hopper (a) is a unipedal hopper that is very tall, (b) is a heavy short crab-like

creature, and (c) and (d) are distinct quadrupeds. Creature (c) drives a large protrusion on its back to generate momentum, and (d)
has a tail for balance.

Various creatures

Lehman, J., & Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition. GECCO.
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Multidimensional Archive of Phenotypic Elites

Learn an archive of walking gaits to allow -
adaptation to damage.

Phenotypic aspect:
number of legs used.

0.11 m/s

0.30 m/s

0.22 m/s

Learning guided by self-knowledge Compensatory behavior

Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature.
21



Il. Multidimensional Archive of Phenotypic Elites

Map Creation
A

~

Adaptation Step
A

N

High-dimensional (original)
search space

Initial map

Simulation
(undamaged)

First map update

02
10
Low-dimensional (behavior)
search space

Confidence
level

Performance

'Behavioral

dimensions

Final map

Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature.

Adaptation Time

and Number of Trials
30

1 min. 125

120

15

Trials

110

_0§.;

— 10—
OIS

ciQac

22



Quality Diversity Algorithms

Algorithm 1 Quality Diversity

Define and formalize phenotypic descriptors
Initialize population
Initialize archive A
for iter = 1 — generations budget do
Select parents to form new offspring population-based on scoring scheme
Evaluate performance and phenotypic descriptors of offspring
Add individuals (potentially) to niches in archive A
Update selection scores
end for

23



2b. The Extended
Phenotype



A Conversation about the Extended Phenotype

The most important kind of replicator is the gene
... Replicators are not, of course, selected directly,
but by proxy; they are judged by their phenotypic
effects

... the replicator should be thought of as having
extended phenotypic effects, consisting of all its
effects on the world at large, not just its effects
on the individual body in which it happens to be
sitting.

(Dawkins 1982)

Dawkins, R. (1982). The Extended Phenotype.
Laland, K. N. (2004). Extending the Extended Phenotype,

“There is a power and utility to regarding the gene
as the unit of selection, but equally there is value
to seeing the organism as the unit of niche
construction.”

(Laland 2004)

“The beaver’s dam is as much an adaptation as
the beaver’s tail. In neither case have we done the
necessary research to show that it results from
gene selection. In both, we have strong plausibility
grounds to think it is.”

(Dawkins 2012)

Dawkins, R. (2012). Extended Phenotype - But Not Too Extended. A Reply to Laland, Turner and Jablonka.

25



The Extended Phenotype

T small /W “size of confined space

able to enter?”
rivers to expand . /\
territory?” ,\ © d (‘ ) /

S N

sak
\>)

O

Fig. 1 Some phenotypic aspects, like the ability to traverse a river, put the fire ant and the beaver
into the same phenotypic niche. Aspects like body size allows separation between the two species
into separate niches. Stink bugs however can enter similar confined spaces like ants do, but they

cannot swim.

Dawkins, R. (1982). The Extended Phenotype.
Hagg, A. (2019). Discovering Modes using Quality Diversity Algorithms. (tbp)
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“Behavior Characterization”

In NS/NSLC we saw the following BC dimensions:

- Final position of a robot

- Height of virtual creature

- Mass of virtual creature

- Number of active joints of virtual creature

“BC” can be seen as misnomer, as it does not only
encompass behavioral aspects.

Misnomer due to the application to virtual
creatures.

Behaviors are not the only part of a phenotype

Dawkins, R. (1982). The Extended Phenotype.

- Result of a behavior

- Creature morphology
- Creature morphology
- Creature morphology

Morphology, behavior, influence, cooperation,
extend the phenotype as far as necessary and
appropriate for application.

27



Morphological Features

Prediction True Value

Other examples of phenotypic features -

o control points

.......... ool 1111 degreeof
freedom
ST O——
; Zup
.......... ????? _) Yup
'X curvature >
2D domain 'S,length "I'\ Tk 3D domain

Gaier, A, Asteroth, A., & Mouret, J. B. (2017). Feature space modeling through surrogate illumination. GECCO.

Hagg, A., Asteroth, A., & Bick, T. (2018). Prototype Discovery using Quality-Diversity. PPSN. 28



Difference Genotypic/Phenotypic Niching

- Depends on encoding (free form
deformation vs direct encoding of polygon)

- Genetic neutrality: triangles versus rotated
triangles

- So:are we interested in putting these
triangles into their own niche? | think not.
The engineer thinks not.

- Possibly take this further one step: HEEEEEERIEEEEEEEE
“morphological” neutrality: different shapes dRadios dlbret
can cause similar flow (-> idea: perform
niching on the flow characteristics) \ /

VAN




2¢. Archives



Archive types

== phenotypic aspect dimension

A A

archive member

A

NSLC

MAP-Elites

>

CVT-MAP-Elites

e® new candidate

A

Fad

>

HSP-MAP-Elites

Fig. 3 The first two QD algorithms introduced an unbounded (NSLC) and fixed-grid bounded
(MAP-Elites) version of the phenotypic archive. The fixed grid in the latter can be replaced with a
Voronoi or a hierarchical subdivision of the phenotype space.

Figure from: Hagg, A. (2019). Discovering Modes using Quality Diversity Algorithms. (tbp)
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Archive types

time »

’.

> > > >

Fig. 4 Expansive MAP-Elites. The bounds of the MAP-Elites archive can be expanded over time
in case the bounds cannot be predetermined [76].

Figure from: Hagg, A. (2019). Discovering Modes using Quality Diversity Algorithms. (tbp)



Archive types

time

k=2 k++

Fig. 5 Cluster-Elites. The subdivision of an unbounded archive can be created using clustering
techniques. The number of clusters can then be increased over time [76].

Figure from: Hagg, A. (2019). Discovering Modes using Quality Diversity Algorithms. (tbp)
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Archive types

.\‘-\’\‘\
o144 [2@@]

Fig. 6 Hierarchical behavior repertoire. By building up a hierarchy of stacked archives, each archive

can be filled using compositions of primitives from another layer.

Figure from: Hagg, A. (2019). Discovering Modes using Quality Diversity Algorithms. (tbp)

>
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2d. Selection
Procedure



Selection Procedures

- Random

- Proportionate to score
- Fitness
- Novelty
- Curiosity: propensity of individual to

generate successful offspring
Collection sizt_’e::‘50 Maximal Quality

Total Quality

Total Novelty
92.3,

-0.05 -0.002)
-0.1 -0.004)
-0.15 -0.006F—
0.2 -0.008)
-0.25 -0.01
-0.3 0.012
-0.35 -0.014)
-0.4 -0.016}
-0.45 -0.01 )
0O 1 2 3 4 5 49 a9 5
x 10 x 10 x10% x 10 x10%
5 Number of Iterations
i
7000 6280 210 6000 5120, - pareto
6000 6260 | o 5000 5100F—— — pop_cur|05|ty
5000 .~ 6240 - - 5080 - pop_rfove“:y
o 4000 6220 . po S060) w+eee+ pop_fitness
2 3000 Zm sodo ) = curiosity
O 2000 -6 2000 5020 === novelty
6160| <o3f Il Yy Ui e fitness
1000 r 8 1000 5000 !
0 2:2 obai 19 0 498 tandom
0 1 2 3 4 5 49 5 0 1 2 3 4 5 49 5 (] 2 3 4 5 49 5 —— no_selection
x 10 x10* x 104 x10% x10% x10% = NSLC

Number of Iterations Number of Iterations

Cully, A., & Demiris, Y. (2017). Quality and Diversity Optimization: A Unifying Modular Framework. EC

Number of Iterations
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3. MOO vs QD: a
small experiment



Why Diversity in Morphological Optimization?

- Insights in possible solutions

- Optimization at the start, not the end of a
design process (ideation)

- Postpone decisions (turn criteria into
features)

- Increase optimization process’ robust
against humans

38



Comparing Diversity between MOO and QD

Free form deformation of n-polygons MOO: NSGA-II:
three criteria/objectives
Criteria: area, perimeter length, point symmetry - maximize point symmetry
min. perimeter length
max. area

QD: MAP-Elites:
Single objective: maximize point symmetry
Features: area, perimeter length

HNEEEEENIEEEEEEEE

dRadius dTheta

39



Measuring Morphological Diversity

]
]
y 1 NSGA-II
1 ¥ 10 QD-default
L] ' QD-curiosity
]
1
L 1
: 1
1 5r @
" ' J
] : - . £
» ° <
: ] . ° v
1 0Fr o
1 -,
: 1 * 3 «©
1 : 5 | b ¢
' ' Y 4 s
! 1
s ]
: 1
1
1 ' -10
l ------------------------ L
1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15

Phenotype: bitmap of filled polygon

t-SNE* projection of phenotypes, comparing

NSGA-II to two instances of a QD algorithm

'Van Der Maaten, L. J. P, & Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research

40



Comparison in Archive Space

perimeter
L —

|||||||||||||||||||||||||||||

NSGA-II

This result is obvious, as in NSGA-Il area and perimeter are optimization criteria.
But that is the crucial difference of features and criteria.

109

-108

Bl 0.7

06

rimeter
Tl ™

N |

vvvvvvvvvvvvvvvvvvvvvvvvvvv

area

MAP-Elites

-109

408

1 0.7

0.6

05

04
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02

01
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Morphological Diversity of QD > MOO

NSGA-II

NSGA-I|
QD-default
QD-curiosity




4. Search for
features



Defining Phenotypic Features

Defining phenotypic features is hard

- From experience: 3 features can already be
hard

- Canwe expect formal definitions of
features from every user?

- Question: what are interesting features of
airflow?

- Features might be highly correlated, and
diversity collapses.
Question: what would happen if the
correlation between two features equals 1?

44



Defining Phenotypic Features

Defining phenotypic features is hard en COd | ng: Ci rCIQS

- From experience: 3 features can already be
hard A
- Canwe expect formal definitions of
features from every user? .
- Question: what are interesting features of .
airflow?
- Features might be highly correlated, and
diversity collapses.
Question: what would happen if the
correlation between two features equals 17 . )

radius




Automating search for features

Can we automate finding phenotypic similarity?

- ldea: use autoencoders!
- High dimensionality of phenotypes (d)
- Find low-dimensional description

- Use latent space dimensions as features low-dimensional
latent space

(finally some deep learning...:|)

46



Behavioral Manifold

Repertoire Some evidence:
—— s - 'Paolo 2019
election 3 3
& Mutation/ - ?Cully 2019
v Lo
‘ i - ...and some of my work soon
A Descriptor Y
Robot Dimensionality Dataset
Reduction R e % Air hockey
00 s Initial configuration  End of the movement
0000
000000
Sensory \_ i
Data™ ~~—1— _>I , Training
Sample ’ \

' Paolo, G., Laflaquiére, A., Coninx, A., & Doncieux, S. (2019). Unsupervised Learning and Exploration of Reachable Outcome Space.

2 Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors. 47



Behavioral Manifold

Latent space Puck trajectories Reconstructed Final positions Initial configuration  End of the movement
(behavioral descriptor) Trajectories of the puck

A

E £ 8 &

There is no reconstruction
with Hand-coded as}

Hand-coded

¢t & ¢ ¢t

AURORA-PCA

AURORA-AE

Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors.
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Manually defined features

*writing this up as we speak

Learned features (autoencoder)
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5. Insights



Alignment of Quality and Diversity

QD algorithms generally perform better than NS

alone when BC is uncorrelated to fitness V D
BC dimensions used: D
1. High alignment: endpoint (x,y) coordinates

2. Lowalignment: direction

NSLC
400k E-N

ME NSLC
NS
> > 80k F
i Fit %
)
z 2 %
0O 200k (=]
2 2 a0k
§ ©
100K 1
(e} C 20k
o ol
0 50k 100k 150k 200k 250k 0 150k 300K 450 600K 750k
Evaluations Evaluations

Figure 2: EndpointBC (very high alignment). In this Figure 5: DirectionBC (low alignment). With an al-

Pugh, J. K., Soros, L. B., & Stanley, K. O. (2016). Searching for quality diversity when diversity is unaligned with quality. LNCS
Pugh, J. K, Soros, L. B., Szerlip, P. A,, & Stanley, K. O. (2015). Confronting the challenge of quality diversity. GECCO



Stepping Stones

- Evolutionary paths often pass through
several basins of attraction before ending
up in the target basin.

- Decomposing a problem into subtasks is

often necessary to reach complicated tasks.

- stepping stones: subtasks can be used as
intermediate goals that allows a system or
organism to be "guided" to a certain
complex goal in a multimodal domain.

How does this effect occur in QD algorithms?

The order of the subtasks (simple to complex) is
clearly of importance to the performance of an
optimization algorithm.

QD algorithms avoid ordering altogether by
allowing all subtask combinations to be explored
using the QD archive. Simple subtasks are saved
alongside of complex subtasks.

Huizinga, J., & Clune, J. (2018). Evolving Multimodal Robot Behavior via Many Stepping Stones with the Combinatorial Multi-Objective Evolutionary Algorithm
Meyerson, E., & Miikkulainen, R. (2017). Discovering evolutionary stepping stones through behavior domination. GECCO
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Impact on QD performance:

Genetic sensitivity: small perturbations in
genome can lead to large changes in
phenotype.

Genetic neutrality: multiple species can be
assigned to the same niche. Niches are
defined by simplification of full phenotype.
Comparison might lead to preference of
one over the other..

Ecological neutrality: morphological
variations might show similar behavior in a
niche.

Alignment of Genotype and Phenotype

species niche assignment

genetic neutrality genetic sensitivity

effect

Fig. 10 Species and phenotypic niche borders are not necessarily aligned. Due to genetic neutrality,
different genotypes can expose similar behavior and be put into the same niche. Genetic sensitivity
can cause members of the same species to occupy different niches.

phenotypic variation  niche assignment ecological neutrality
[
T effect T
9 - P
g =
o o
S0 )
gene 1 = gene 1 =

Fig. 11 Due to ecological neutrality, different phenotypes can, under given circumstances show the
similar behavior. This can cause different species to occupy the same niche.
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Influence on Exploitation and Exploration

- Mutation operator and strength
- Selection scheme
- Effect: erosion of archive
- Increasing Exploration.
- Using novelty metrics as part of BC
space.

Using multiple non-parallel archives
Using surprise search

55



6. Performance
Metrics



Metrics

Collection size
Maximal quality

Total quality: sum of all fitness values
- increases when fitness of individuals
- orindividual gets added

Total novelty

Or more classical diversity metrics:

- Volume of genetic convex hull
- Distances in genetic space
- Sparsity

57



7. Applications



Walking Gaits
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Walking robot

Adaptation Step

W, Initial map First map update Final map



Hierarchical Behavior
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Cully, A., & Demiris, Y. (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors.



Generating Adversarial Examples in DL

SRR L e

ottt ot A
RN

| robin I cheetah armadillo lesser panda I king penguin starfish

cenapponniny

1poooooons
%

AR LA AR ARE

ontrol " peacock ' " African grey

n

centiede |[ peaoc " ackfrui " bbble I I freight car " remote

Nguyen, A., Yosinski, J. and Clune, J., (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. ICCV



Morphological Optimization w. Surrogate
Assistance

0) Sample design space

- QD needs 100.000s-1.000.000s of
evaluations

- Efficient Quality Diversity with standard
Gaussian Process surrogate model

- Acquire expensive precise evaluations with
upper confidence bound sampling

1) Construct model
2) Maximize acquisition function

3) Sample acquisition map

4) Maximize performance estimation

Gaier, A., Asteroth, A., & Mouret, J-B. (2017). Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted
lllumination
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Morphological Optimization w. Surrogate
Assistance

ﬁ::a-—J/

/

— 0
L

Fig. 3. Design Space Overview with SAIL

Prediction map produced by SAIL after 1000PE.

Border: Median performing designs found by SAIL in green, best designs
found by CMA-ES in black.

Optimization Performance Per Precise Evaluation
98.9% (Bin) SA-CMA-ES 98.9% (Map) SA-CMA-ES

98.5% (Map) CMA-ES,

98.5% (Bin) CMA-ES
1197.6% (Map) SAIL

—1.9% (Map) MAP-Elites

Percentage of Optimum
g
X

" L - L . ! L 1
10! 102 103 104 10°
Precise Evaluations
= CMA-ES == SA-CMA-ES SAIL === MAP-Elites

Fig. 7. Optimization Efficiency in a Single Bin and Over the Entire Design Space

Computational efficiency of CMA-ES, SA-CMA-ES, MAP-Elites, and SAIL in precise evaluations. Bin: median progress towards optimum in every bin.
Map: performance of CMA-ES and SA-CMA-ES is median bin performance multiplied by number of bins. Performance of individuals produced to
construct initial models is set to 0%. Bounds indicate one standard deviation over 20 replicates. PEs and performance in log scale.



Computer Aided Ideation

[l explore genotypes B map solutions to Bl user selects prototype(s) Bl setup QD guidance
QD builds archive of similarity space 'Q selected solutions serve
well-performing EJextract design classes ) @ . - as QD starting points.
solutions BElidentify prototypes (4) g ....:... s *J’

o"* .
©l <. A 8 MR " >
E % * \ . ‘g’ ‘.’ . 1
B % % & -t‘.- T ; classes/prototypes can & y
EEA B B ° \{ < be backprojected onto
‘ Q/ & o ot 0*‘. archive.
A repeat until design is satisfactory :

a9

iteration 1:
select prototype (a)
from 18 classes

iteration 2:
21 subclasses created
within selected prototype

Hagg, A., Asteroth, A, & Bick, T. (2018). Prototype Discovery using Quality-Diversity. PPSN
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Expensive Morphological Optimization

Free form deformation of mirror (TUM)
Minimize drag coefficient (OpenFOAM)

relative length (y)

fe)
_,.O
o !
o)
o
IS
A O
SRR o
> 3D domain

relative length (x)

AErOmAt project (funded by BMBF), preliminary results



Expensive Morphological Optimization
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8. Conclusion



Summary

Quality Diversity:

- Phenotypic niching

- Behaviors, morphological features, etc.

- QD produces 100s, 1000s of optimal
designs or behaviors

QD: gives us a notion of what is possible and
high-performing, maximizing phenotypic diversity of
a large solution set.

Maybe design criteria are not always what they are,
or at least might be premature. Try turning criteria
into features.
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